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Abstract

In our earlier work (S.E. Bechtel et al., J Appl Mech 2000;67(1):197–206) we created a model for slip of linearly elastic belts on pulleys,
and adapted our model to isothermal draw of fibers on rollers (submitted for publication). Here, we: (i) incorporate temperature dependence,
(ii) extend the constitutive characterization to piecewise linearly elastic–plastic fibers to capture the softening behavior of as-spun fibers, and
(iii) assemble governing equations for fibers on rollers and in freespans, together with matching conditions, to produce a comprehensive
model for a two-stage, non-isothermal industrial draw process. The model is then employed to simulate three representative drawlines.
q 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Fiber drawing; Multi-stage draw processes; Non-isothermal draw

1. Introduction

The manufacturing process of a polymer fiber consists of
first spinning molten polymer into filaments through a capil-
lary and then uniaxially drawing the solidified filaments.
This process of spinning followed by drawing is designed
to produce a filament with a desired strength, accomplished
by inducing sufficient orientation of the polymer molecules
along the axial direction of the filament.

During the spinning process the polymer exits the capil-
lary of the spinneret with a die swell, which removes any
molecular orientation in the polymer jet. This isotropic
polymeric melt is then stretched in the spinline downstream
of the die swell while it cools, inducing orientation of the
molecules prior to solidification of the fiber. The relaxation
time of the polymer melt is typically comparable to the time
available for the fiber before it solidifies, however, thereby
undoing much of this orientation, and hence the amount of
orientation that can be induced in the fiber during spinning
is insufficient to produce the desired strength.

The orientation of the polymer molecules can be
increased after the spinning process by a subsequent draw-
ing process, in which the solidified, as-spun fiber is heated to
a temperature above the glass transition and drawn with a
series of rollers. The purpose of the draw process is to
convert relatively weak as-spun fibers to fibers with greater

molecular orientation and the resulting greater strength.
Draw enhanced morphology and micro-structure is respon-
sible for improved properties of fibers and films [1–6].
Using Nuclear Magnetic Resonance (NMR), Botev et al.
[1] show that for polyamide-6 fibers, temperature plays a
key role in determining whether the draw is effective. Cans-
field et al. [2] studied the effect of windup speeds and draw
ratios on the mechanical properties, molecular orientation,
and shrinkage behavior of PET fibers. They report that the
effect of increasing the windup speed of the spun fiber is
similar to an increase in molecular weight and hence the
viscosity of the polymer. Postema and Pennings [3] found
that homogeneous drawing, achieved by drawing at low
deformation rate, is most efficient in improving strength
for poly(l-lactide) fibers. Inhomogeneous drawing under
high deformation rates with temperature gradients resulted
in reduced fiber properties. However, in a manufacturing
process it is important to use a draw process with high
deformation rate in order to improve productivity. It
remains to find the temperature strain rate combinations
that optimize fiber properties.

New crystals are formed and redistribution of existing
crystals occurs during draw. Salem [4] investigated the
influence of uniaxial draw strain on crystallization in PET
films, under both constant extension rate and constant strain
rate conditions. It was found that at high strain rates the
crystallization rate increases, while the pattern gradually
reverses as strain rate is reduced. Hermanutz et al. [5]
studied the effect of draw, and the resulting micro-structure,
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on surface properties. Gohil and Salem [6] studied the effect
of bi-axial drawing of PET film on amorphous (non-crystal-
line) orientation. They investigated the effect of sequential
drawing on producing a “balanced” bi-axial orientation to
enhance strength in both directions.

A wide variety of drawing processes are used in industry.
The main reason for differences in drawing processes is
based on whether the product is a continuous filament
yarn or a staple tow (where filaments will be cut to short
fiber segments at a later stage). In drawing, filament yarn
consists of fewer filaments than staple, which contains thou-
sands of filaments in a yarn or tow. As a consequence, PET
filament yarn is generally drawn with radiant heating of the
freespan between the rollers. The rollers are not heated, and
the draw occurs in the freespan. Staple PET tow is heated
using a hot water bath during drawing. As the rollers are also
enclosed in the chamber, they are also heated. Owing to the
large number of filaments present in a staple tow, a set of
feed rollers and a set of take-up rollers are used in the
drawing process. Each set of rollers is moving with the
same angular velocity, and the draw is achieved by rotating
the second set of rollers faster than the first set.

In some processes all the draw is introduced in one step,
in a single stage of feed and take-up rollers. This single-
stage draw can result in fiber breakage; hence, a two-stage
draw is sometimes used in the manufacturing process. In the
two-stage process most of the draw (generally between 2.2
and 2.7 draw ratio) is induced in the first step and a rela-
tively smaller draw (1.1–1.2) is applied in the second stage
to improve filament strength. One could use multiple draw
steps beyond two to introduce draw. The optimal number of
stages in the draw is generally determined from extensive
experimental effort. As the number of stages is increased, it
is possible to keep each freespan and roller at a different
temperature and induce the maximum possible draw in each
stage in order to obtain the maximum molecular orientation

in the fiber. This is the idea behind the new Incremental
Draw Process (IDP) [7], in which draw is induced progres-
sively in the fiber using a large number of incremental
stages.

What is lacking in the literature is a comprehensive treat-
ment modeling the thermo-mechanical response of fibers
under different combinations of thermal histories and
windup speeds, which we provide here. In this work we
present the fundamental theoretical basis to analyze draw
on rollers and in the freespans between rollers, and assemble
this knowledge to produce a model for a two-stage industrial
draw process. The restriction to two stages is for specificity
only; models for drawlines with more than two stages can be
constructed in a straightforward manner following the
procedure we demonstrate here for two stages. In Section
2 we give a brief description of the draw process, and in
Section 3 we establish governing equations for fiber beha-
vior on rollers and in freespans. In Section 4 we assemble
solutions to these equations to produce the two-stage draw
model, and numerically simulate three processes, i.e.
isothermal draw, draw with a heated freespan, and draw
with a heated roller.

2. The two-stage draw process

During a two-stage draw process the fiber tow passes over
three rollers. We model a two-stage draw process with no
guides; see Fig. 1. For simplicity in this paper we take all
three rollers to have the same radiusr, although this restric-
tion is unnecessary. These rollers rotate at specified constant
angular velocitiesv1, v2, andv3, respectively, each faster
than the one before�v1 , v2 , v3�: Roller 1 functions as
the feed roller of the first draw stage; roller 2 functions as
both the take-up roller of the first draw stage and the feed
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Fig. 1. The possible draw zones for the two-stage process: (1) on the feed roller of the first stage (betweeny1 andx1), (2) in the first freespan (betweenx1 andx2),
(3) on the take-up roller of the first stage (betweenx2 andy2), (4) on the feed roller of the second stage (betweeny3 andx3), (5) in the second freespan (between
x3 andx4), and (6) on the take-up roller of the second stage (betweenx4 andy4).



roller of the second draw stage; roller 3 functions as the
take-up roller of the second draw stage.

We describe the path of the fibers with space-fixed
(Eulerian) arclengths. In our notation,x indicates a speci-
fied location, andy andv indicate an unknown location and
speed, respectively. As shown in Fig. 1, the fibers attach to
the first roller at specified locations� x0 with speedrv1

matching the surface speed of the roller. The fibers detach
from the first roller at specified locations� x1 with a speed
v1 that will be deduced by the model;v1 is in general greater
than or equal to the roller surface speedrv1, indicating the
possibility of a draw (i.e. slip) zone on the first roller, in
which the fibers are moving faster than the underlying roller
surface. The model will also predict the location on the first
roller where this draw begins, denoted byy1. Note we must
havey1 # x1 : If the model predicts solutionsy1 , x1 and
v1 . rv1 then there is draw on the first roller; the region
x0 # s # y1 is the no-slip zone, andy1 , s # x1 is the draw
zone. If the model predictsy1 � x1 andv1 � rv1 there is no
draw on roller 1, i.e. there is no draw on the feed roller of the
first stage.

The first freespan extends in our notation froms� x1

to s� x2; where s� x2 is the specified point of attach-
ment to the second roller. The speedv2 at which the
fibers attach to the second roller, to be deduced by the
model, is in general greater than or equal to the speed
v1 with which they depart the first roller, so that there is
possibly draw in the first freespan. If the model predicts
v2 . v1; then there is draw in the freespan; ifv2 � v1;

there is no draw.
Further, the speedv2 of attachment to the second roller

deduced by the model is in general less than or equal to the
roller speedrv2, so that there is also the possibility of a draw
zone on the second roller, where the fiber is moving slower
than the underlying roller. The draw on the roller terminates
at a locations� y2 to be deduced by the model. In this draw
zone x2 # s , y2 the second roller is functioning as the
take-up roller of the first stage. If the model predictsy2 �
x2 andv2 � rv2 then there is no take-up draw on roller 2.

Moving down the drawline, the fibers detach from the
second roller at a specified locations� x3 with a speedv3

deduced by the model that is in general greater than or equal
to the roller speedrv2. Hence the fibers move without slip at
roller speedrv2 from s� y2 (where the first stage draw
ceases) to some points� y3 where a possible second
draw zone on the middle roller begins. In this second
draw zoney3 , s # x3 the second roller is functioning as
the feed roller of the second stage, and the fibers are moving
faster than the underlying roller. Again, a solutiony3 � x3

andv3 � rv2 would indicate that there is no feed draw on
roller 2.

The second freespan extends from the locations� x3 of
departure from second roller to the locations� x4 of attach-
ment to the third and final roller. The fibers attach to the final
roller with a speedv4 deduced by the model, which in
general is greater than or equal to the speedv3 with which

they depart the second roller, so that draw is possible in the
second freespan.

The speedv4 of attachment to the third roller deduced by
the model is also in general less than or equal to its surface
speedrv3, creating the possibility of a take-up draw zone in
which the speed of the fibers is less than the underlying
roller speed. The slip terminates ats� y4; at which point
the fibers have reached the speedrv3 of the roller. The fibers
maintain this speed until they exit the final roller ats� x5:

Summarizing, in the two-stage draw process without
guides draw is possible in six zones, depending on process
conditions and the response of the as-spun fiber (see Fig. 1):

1. on the feed roller of the first stage, ifv1 . rv1 andy1 ,
x1;

2. in the freespan of the first stage, ifv2 . v1;

3. on the take-up roller of the first stage, ifv2 , rv2 and
y2 . x2;

4. on the feed roller of the second stage, ifv3 . rv2 and
y3 , x3; (note that roller 2 is both the take-up roller for
the first draw stage and the feed roller of the second
stage);

5. in the freespan of the second stage, ifv4 . v3; and
6. on the take-up roller of the second stage, ifv4 , rv3 and

y4 . x4:

For each of these six possible places, draw does not occur if
the corresponding inequality above is instead an equality,
e.g. there is no draw on the take-up roller of the second stage
if v4 � rv3 andy4 � x4: In the modeling of the two-stage
draw,x1, x2, x3, x4, rv1, rv2, andrv3 are specified, andy1, y2,
y3, y4, v1, v2, v3, andv4 are deduced.

3. Basic equations and solutions

In this paper we present a theoretical framework to
predict the thermo-mechanical behavior of the fibers during
drawing that is independent of the particular quantitative
constitutive behavior of the fiber. The framework is devel-
oped by satisfying the necessary conditions in continuum
mechanics (i.e. conservation of mass and momentum). The
behavior of the fiber under uniaxial tension for various
temperatures must be input, to be obtained ultimately for
a particular fiber from measurements of the response of that
fiber in uniaxial tension tests. For the demonstration of this
paper we use a fiber model of a form which idealizes the
typical behavior of undrawn PET fiber, rather than address a
particular fiber.

We extend the equations derived in Refs. [9,10] to
account for spatial variation in temperature. Recall that
we have adopted an Eulerian formulation with the location
s fixed in space. We assume the draw process is steady, so
that the conditions at locations are independent of time.

Conservation of mass.The mass per unit volume and
cross-sectional area of the fibers are denoted byr and A,
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respectively. For this steady motion, conservation of mass
requires that the mass flow rateG is constant,

G� rA�s�v�s� � constant: �1�

Conservation of momentum in a freespan.In Ref. [9] we
show that conservation of momentum in a freespan demands
that an increment of fiber tension is related to an increment
of fiber speed through

dT � G dv: �2�

Conservation of momentum on a roller.We denote byf
andn the projections of the force per unit length from the
roller on the fibers in the tangential and normal directions,
respectively, and assign positiven to be compressive and
positivef to be in the direction of decreasings. Where there
is no slip, the sign and magnitude of friction depends on the
demands of the momentum equation. Where there is slip we
assume that the magnitude off is given by

u f u � m�Q�n; �3�

where for specificity the coefficient of friction is a function
of temperatureQ (as in Ref. [8],m could also be considered
as a function of filament speedv, resulting in only minor
changes to the following analysis). According to our sign
convention on friction,f is positive if the fibers are moving
faster than the roller surface (as in draw on a feed roller) and
negative if the fibers are moving slower (as in draw on a
take-up roller). We ignore aerodynamic forces and viscous
heating, and conservation of momentum projected in the

tangential and normal directions are

dT 2 f ds� G dv; n� T 2 Gv
r

: �4�

Solutions to the draw model must satisfy the condition that
the normal force per unit lengthn from the roller on the
fibers be compressive or zero (non-negative according to
our sign convention), which, combined with the second of
Eq. (4), demands

T 2 Gv $ 0: �5�
Constitutive behavior.We assume that in the draw

process the fibers of the tow form a layer resembling a
belt, and every fiber experiences equal tension and stretch.
We characterize the fiber tow as thermoelastic–plastic, i.e.
the increment dT of tensile force in a fiber at a point depends
on the tow’s axial straine , strain increment de , and
temperatureQ at that point. We have not included viscous
effects in our idealized constitutive model for fiber response
during drawing. Viscous effects are highly dependent on the
processing temperature, and the draw temperatures we
simulate in Section 5 are below the range where viscous
effects are important. Moreover, the draw processes we
simulate are relatively fast and short (greater than 400 cm/s
in drawing spans of about 450 cm), so that the residence
times in the draw processes are short. Hence during these
processes viscous effects are likely insignificant (although
there may be significant relaxationafter the draw).

The axial straine at a points of the tow is

e�s� � dl�s�
dl ref

2 1; �6�
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Fig. 2. Constitutive relation between axial forceT and straine in the fiber tow at fixed temperature, valid for processes in which tension and strain increase
monotonically down the drawline.



with dl�s� the length of an infinitesimal section of the fiber at
locations and dlref the length of that section in some refer-
ence state. Without loss of generality we select the state of
the fiber tow as it attaches to the first roller as the reference
state, i.e. the state to which we assign zero strain. The tensile
force in the tow as it attaches to the first roller is labeledT0.
In the draw processT0 is controlled. From constraint (5), this
upline tensionT0 must be greater thanGrv1; an insuffi-
ciently tensioned tow will fly off the roller.

We produce a thermoelastic–plastic constitutive equation
for the fiber tow which models the behavior of a soft draw
plateau between stiffer regions. This response is typical of
as-spun, undrawn polymeric fibers. For small strains the tow
is stiff and elastic, with large modulusK1. When the loading
and strain are monotonically increasing throughout the draw
line, at a threshold valueea of strain the modulus abruptly
softens to a valueK2 less thanK1, and beyond a second
transition straineb the modulus again stiffens to a value
K3 greater than the plateauK2. At strain e c the filament
breaks. See Fig. 2. The moduliK1, K2, andK3 and the strains
ea, eb, ande c are specified functions of temperatureQ . In
equations, for monotonically increasing loading (i.e. when
de $ 0 for all s) and uniform temperature,

dT �
K1 de if e # ea

K2 de if ea # e # eb

K3 de if eb # e # ec:

8>><>>: �7�

If the filament unloads, i.e. if de , 0 at some locations,
then dT � K1 de: Therefore if the filament has been loaded
beyond the first transitionea, there is permanent deforma-
tion, sinceK2 , K1:

In our simulations to follow, we adopt linear dependence
of the moduli and transition strains on temperature:

K1�Q� � k11 1 k12�Q 2 Q0�;
K2�Q� � k21 1 k22�Q 2 Q0�;
K3�Q� � k31 1 k32�Q 2 Q0�;

�8�

(unless the value of temperature is such that the function is
negative, in which case the modulus is zero), and

ea�Q� � e11 1 e12�Q 2 Q0�;
eb�Q� � e21 1 e22�Q 2 Q0�;
ec�Q� � e31 1 e32�Q 2 Q0�:

�9�

In Eqs. (8) and (9),Q0 is the temperature of the fibers as they
attach to the first roller.

Because there are no guides in the processes we model in
this paper, there is no unloading: the increments dT and de
of fiber tension and strain are positive everywhere, i.e.T and

e monotonically increase down the drawline. For such
processes, our incremental thermoelastic–plastic constitu-
tive model (7) can be integrated to produce a stress–strain
relation for the thermoelastic–plastic fiber, giving tension as
a function of strain and temperature,

~T�e;Q� �

T0 1 K1e if 0 # e # ea

T0 1 K1ea 1 K2�e 2 ea� if ea # e # eb

T0 1 K1ea 1 K2�eb 2 ea�1 K3�e 2 eb�
if eb # e # ec:

8>>>>><>>>>>:
�10�

This is a special case of the result in plasticity that in uniax-
ial tension with no unloading (or, most generally, 3D load-
ing in which the stress components monotonically increase
during the experiment in proportion to one another, called
‘simple,’ ‘radial,’ or ‘proportional’ loading) the incremental
theory relating increment of strain, strain, and increment of
stress integrates to a function relating stress to strain, i.e. the
equations behave as equations of non-linear elasticity, even
though there is permanent deformation [11,12].

For a moving fiber, the straine�s� at any points is related
to the fiber speedv�s� at that point and the speedrv1 of the
fiber in the reference state where it attaches to the first roller
by

e�s� � v�s�
rv1

2 1: �11�

Hence, the constitutive equation (10) can be recast as
tension as a function of fiber speed and temperature,

~T�v;Q� �

T0 1 K1
v

rv1
2 1

� �
if rv1 # v # va

T0 1 K1
va

rv1
2 1

� �
1 K2

v
rv1

2
va

rv1

� �
if va # v # vb

T0 1 K1
va

rv1
2 1

� �
1 K2

vb

rv1
2

va

rv1

� �
1K3

v
rv1

2
vb

rv1

� �
if vb # v # vc;

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
�12�

where va � rv1�1 1 ea�; vb � rv1�1 1 eb�; and vc �
rv1�1 1 ec� are specified functions deduced from Eq. (9).
From Eqs. (8) and (12) we have that an increment of force
dT is related to increments dv and dQ of speed and tempera-
ture, respectively, through

dT � 2 ~T
2v

dv 1
2 ~T
2Q

dQ; �13�
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where

2 ~T
2v
�

1
rv1
�k11 1 k12�Q 2 Q0�� if v # va

1
rv1
�k21 1 k22�Q 2 Q0�� if va # v # vb

1
rv1
�k31 1 k32�Q 2 Q0�� if vb # v # vc;

8>>>>>>><>>>>>>>:

and

2 ~T
2Q
�

k12
v

rv1
2 1

� �
if v # va

k12
va

rv1
2 1

� �
1 k22

v
rv1

2
va

rv1

� �
if va # v # vb

k12
va

rv1
2 1

� �
1 k22

vb

rv1
2

va

rv1

� �
1k32

v
rv1

2
vb

rv1

� �
if vb # v # vc:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
The values of material constants used in the simulations

to follow are in Table l. For the signs ofk11, k12, k21, k22, k31,
k32, e11, e12, e21, e22, e31, and e32 given in Table 1, the
stiffnessK1 of the initial elastic zone decreases, and the
stiffnessesK2 andK3 of the subsequent zones and width of
the compliant intermediate draw plateau increase, with
increasing temperature. (Typically, the initial elastic stiff-
ness K1 of an undrawn fiber decreases with increasing
temperature [13]. Beyond the elastic range the stiffness of
the fibers is strongly influenced by the amorphous
orientation and the degree of crystallinity induced by the
draw, and the relative proportion of extended chain crystals
vs. folded chain crystals present in the fiber, which in turn
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Table 1
Values of material constants of Eqs. (8) and (9) used in the simulations to
characterize the fiber tow

Constant Value Units

T0 40000 dyn
k11 39043800 dyn
k12 298100 dyn K21

k21 29459 dyn
k22 0.1962 dyn K21

k31 882900 dyn
k32 1962 dyn K21

e11 0.025
e12 20.00025 K21

e21 0.70
e22 0.0002 K21

e31 2.3219
e32 0.0003 K21
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Fig. 3. Constitutive relation between axial force and speed employed in the simulations as temperature increases from 293 to 323 K (top to bottom) in
increments of 20 K.



are influenced by temperature. Hence, morphological
changes in the fiber could explain the experimental observa-
tions that a higher stiffness is observed for the third stage
(i.e. the stiff stage after the draw plateau) when the uniaxial
tension test is carried out at higher temperatures. Our
choices in Table 1 qualitatively account for the temperature
dependence of these morphological factors affecting fiber
stiffness.) Fig. 3 displays the relation (12) between fiber
tension and speed with the values of Table 1 at several
temperatures.

Solution technique.In a fully coupled thermo-mechanical
problem, the mass, momentum, and constitutive equations
of this section are combined with the energy equation, and
these coupled equations are solved simultaneously for
the fiber speedv�s�; tensionT�s�; and temperatureQ�s�:
An alternative to solving for temperature from the
coupled problem is to measure it on-line; withQ�s�
known, the mechanical equations decouple. This latter
approach is followed here: we specifyQ�s�; and solve the
mass, momentum, and constitutive equations forv�s� and
T�s�:

In the draw process the fibers are either in a freespan or on
a roller; on a roller the possible conditions are no-slip, draw
on a feed roller (i.e. slip with the fibers moving faster than
the roller surface), and draw on a take-up roller (i.e. slip
with the fibers moving slower than the roller surface). We
now integrate the combined momentum, friction, and
constitutive equations in each of these cases to obtain closed
form solutions for fiber speed and tension.

3.1. Freespan

In the freespan the relevant equations are Eqs. (1), (2),
and (13). Combining these results in

dv
ds
� �2 ~T=2Q��dQ=ds�

G 2 �2 ~T=2v� ; �14�

where2 ~T=2Q and 2 ~T=2v are given explicitly in Eq. (13).
Referring to Fig. 1, in the two-stage process Eq. (14) is
valid in the freespansx1 , s , x2 and x3 , s , x4: We
integrate Eq. (14) from the beginning to end of each free-
span:

v2 � v1 1
Zx2

x1

�2 ~T=2Q��dQ=ds�
G 2 �2 ~T=2v� ds;

v4 � v3 1
Zx4

x3

�2 ~T=2Q��dQ=ds�
G 2 �2 ~T=2v� ds:

�15�

Eq. (15) involves the four unknownsv1; v2; v3; andv4; once
they are known, the speed as a function of arclength within

each freespan is given by

v�s� �
v1 1

Zs

x1

�2 ~T=2Q��dQ=ds�
G 2 �2 ~T=2v� ds if x1 , s , x2;

v3 1
Zs

x3

�2 ~T=2Q��dQ=ds�
G 2 �2 ~T=2v� ds if x3 , s , x4:

8>>><>>>:
�16�

Inserting this function into the constitutive equation (12)
produces fiber tensionT�s�:

3.2. Draw on a feed roller

When draw occurs on the feed roller, in that slip zone the
fiber is moving faster than the roller surface. Friction is
kinetic due to the slip, and positive according to our sign
convention. Hence Eq. (3) becomes

f � mn: �17�

The relevant equations for draw on a feed roller are thus
Eqs. (1), (4), (13), and (17); combining these produces

dv
ds
� �2 ~T=2Q��dQ=ds�2 �m=r��T 2 Gv�

G 2 �2 ~T=2v� : �18�

Referring to Fig. 1, in the two-stage process Eq. (18) is valid
in the feed roller draw zonesy1 , s # x1 andy3 , s # x3:

We integrate Eq. (18) from point of slip initiation to point
departure from the roller for each feed roller draw zone to
obtain

x1 � y1 1
Zv1

rv1

G 2 �2 ~T=2v�
�2 ~T=2Q��dQ=ds�2 �m=r��T 2 Gv� dv;

x3 � y3 1
Zv3

rv2

G 2 �2 ~T=2v�
�2 ~T=2Q��dQ=ds�2 �m=r��T 2 Gv� dv;

�19�

the departure speedsv1 andv3 deduced by the model must be
in the rangesrv1 # v1 # rv2 and rv2 # v3 # rv3: Solu-
tions y1 andy3 of Eq. (19) must satisfy the conditions

y1 # x1; y3 # x3; �20�

i.e. the draw zone must be on the roller. If for a parti-
cular constitutive relation and temperature profile the
first of conditions (20) is not satisfied by the solution
of the first equation of Eq. (19), then it is replaced by
y1 � x1; i.e. there is no draw on the feed roller of the
first stage. If the solution of the second equation of Eq.
(19) does not satisfy the second of conditions (20), then
it is replaced byy3 � x3:

Eq. (19) involves the four unknownsy1, y3, v1, and v3;
once they are known, the fiber speed as a function ofs
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within the draw zones is

v�s� �

v1 1
Zs

x1

�2 ~T=2Q��dQ=ds�2 �m=r��T 2 Gv�
G 2 �2 ~T=2v� ds

if y1 , s # x1;

v3 1
Zs

x3

�2 ~T=2Q��dQ=ds�2 �m=r��T 2 Gv�
G 2 �2 ~T=2v� ds

if y3 , s # x3:

8>>>>>>>><>>>>>>>>:
�21�

Again, inserting this function into the constitutive equation
(12) produces fiber tensionT�s�:
3.3. Draw on a take-up roller

When draw occurs on the take-up roller, in that slip zone
the fiber is moving slower than the roller surface. Friction is
kinetic due to the slip, and negative according to our sign
convention. Hence Eq. (3) becomes

f � 2mn: �22�
The relevant equations for draw on a take-up roller are Eqs.
(1), (4), (13), and (22); combining these produces

dv
ds
� �2 ~T=2Q��dQ=ds�1 �m=r��T 2 Gv�

G 2 �2 ~T=2v� : �23�

This equation is valid in the take-up roller draw zonesx2 #
s , y2 and x4 # s , y4: We integrate Eq. (23) from the

point of roller attachment to the point of slip termination,

y2 � x2 1
Zrv2

v2

G 2 �2 ~T=2v�
�2 ~T=2Q��dQ=ds�1 �m=r��T 2 Gv� dv;

y4 � x4 1
Zrv3

v4

G 2 �2 ~T=2v�
�2 ~T=2Q��dQ=ds�1 �m=r��T 2 Gv� dv;

�24�

the attachment speedsv2 andv4 deduced by the model must
be in the rangesrv1 # v2 # rv2 and rv2 # v4 # rv3:

Solutions ofy2 andy4 of Eq. (24) must be consistent with
the conditions

y2 $ x2; y4 $ x4; �25�
otherwise they are replaced byy2 � x2; andy4 � x4; respec-
tively.

Eq. (24) involves the four unknownsy2, y4, v2, and v4;
once they are known, the fiber speed as a function ofs
within the draw zones is

v�s� �

v2 1
Zs

x2

�2 ~T=2Q��dQ=ds�1 �m=r��T 2 Gv�
G 2 �2 ~T=2v� ds

if x2 # s , y2;

v4 1
Zs

x4

�2 ~T=2Q��dQ=ds�1 �m=r��T 2 Gv�
G 2 �2 ~T=2v� ds

if x4 # s , y4:

8>>>>>>>><>>>>>>>>:
�26�
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Fig. 4. The shaded area indicates the power that can be recovered from the fiber at speedv and corresponding tensionT; vr is the speed of the permanently
stretched, unloaded fiber.

Fig. 5. Speed (v), tension (T), normal force per length (n), frictional force per length (f), and temperature profiles (Q) for an isothermal draw process. Crosses
( × ) denote locations where the fibers either attach to or depart from a roller, and circles (W) denote locations of the initiation or cessation of slip. Solid lines
(—) indicate zones of draw on rollers, dashed–dotted lines (- · -) indicate zones of no slip, and dotted lines (···) indicate freespans.
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3.4. No-slip on a roller

In the no-slip zonesx0 # s # y1; y2 # s # y3; andy4 #
s # x5; the fiber speed matches that of the underlying roller
surface, and hence is constant. Therefore in these ranges of
s,

dv
ds
� 0: �27�

Using Eq. (27), the momentum projection given by the first
part of Eq. (4) reduces to an equation for the friction force,

f � 2
2 ~T
2Q

dQ
ds

: �28�

4. Complete model for the two-stage draw process

We now assemble the basic solutions of the previous
section to construct a model of an entire two-stage draw
process. To simulate a particular process, the tow must be
characterized with an explicit constitutive equationT �
~T�v;Q�; and a temperature profileQ � Q�s� must be
provided.

In our solution procedure we first solve for the four free
boundariesy1, y2, y3, andy4 between slip and no-slip and
four transition speedsv1, v2, v3, andv4, labeled in Fig. 1. Eqs.
(15), (19), and (24) are six equations for the eight unknowns
y1, y2, y3, y4, v1, v2, v3, and v4, and hence the problem is
underdetermined. The two free parameters in the problem
exist because our steady formulation does not distinguish
stable steady states from unstable steady states. To select
which of the two-parameter family of steady solutions is the
solution that will be physically sustained, we must either
examine the stability of the steady solutions in the context of
the time-dependent equations, or appeal to energy consid-
erations. The latter approach is followed here.

We identify v2 andv4 as the free parameters, noting that
they must satisfyrv1 # v2 # rv2 andrv2 # v4 # rv3; and
solve Eqs. (15), (19), and (24) fory1, y2, y3, y4, v1, andv3 in
terms ofv2 andv4.

With y1, y2, y3, y4, v1, andv3 all known in terms of the free
parametersv2 and v4, Eqs. (11), (15) and (19) are solved
individually for v�s� within each slip zone and freespan.
The assembled solution along the drawline is labeled by

v� �v�s; v2; v4�; �29�
where we have denoted its dependence on the free para-
metersv2 andv4. With v(s) computed, we obtain the tensile
force,

T � �T�s; v2; v4�; �30�
as a function of position everywhere in the drawline by
insertingv�s; v2; v4�; together with the posited temperature
profileQ�s�; into the constitutive equation (12). The normal
and frictional components�n�s; v2; v4� and�f �s; v2; v4� are also
obtained from the momentum equations of the previous

section once�v�s; v2; v4� has been computed. A different set
of solutionsv, T, f, andn are produced by each pair of free
parametersv2 andv4. The stable set is selected as the one
corresponding to minimum energy.

Minimization of fiber energy.We propose an energy func-
tion which includes kinetic, thermal, and material contribu-
tions. The kinetic contribution to this function is�1=2�Gv2

;

and the thermal contribution isGcQ , wherec is the specific
heat of the fiber material. The material contribution is the
recoverable power, shown schematically as the shaded
region in Fig. 4. Recall that we assume that the fiber unloads
along a line parallel to the first segment of the constitutive
relation (12), which has a slope ofK1=�rv1�: From Fig. 4 we
see that

K1

rv1
� T

v 2 vr
; or vr � v 2

Trv1

K1
: �31�

wherevr is the speed of the permanently stretched unloaded
fiber. Hence the recoverable power is�1=2�T�v 2 vr � �
�1=2��T2rv1�=K1: Thus our energy function is constructed
from an expressionp for power,

p� 1
2

Gv2 1 GcQ 1
1
2

T 2rv1

K1
: �32�

We obtain the energy of the draw line by integrating the
power over the residence time of a material particle in the
drawline,

e� e�v2; v4� �
Ztf

t0
p dt �

Zx5

x0

p
v

ds

�
Zx5

x0

1
2

Gv1
GcQ

v
1

1
2

T 2rv1

K1v

 !
ds: �33�

The correct values of the free parametersv2 andv4 are those
which minimize the energy (Eq. (33)).

5. Simulations

To demonstrate our model, we simulate three different
two-stage draw processes. The specification of fiber beha-
vior used in the three simulations, in the context of the
constitutive function (12) of Section 3, is given in Table 1.

The first process we simulate is isothermal, the second
has a heater in the second freespan, and the third has a
heated third roller. These three processes are distinguished
by the temperature profile we input. In simulation 1 the
temperature is a constant 298 K throughout the process
(see Fig. 5); note that in this simulation we neglect passive
heating due to internal dissipation from stretching and fric-
tion between the fibers and rollers. In simulation 2 the tow
temperature is specified to be the same constant 298 K until
the second freespan, over which it ramps to 323 K (owing to
a freespan heater), then ramps back down to 298 K over the
first 5 cm on the unheated third roller (see Fig. 6). In simu-
lation 3 the temperature is a constant 298 K until the fiber
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Fig. 6. Speed, tension, normal force per length, frictional force per length, and temperature profiles for a drawline with heated second freespan.
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Fig. 7. Speed, tension, normal force per length, frictional force per length, and temperature profiles for a drawline with heated final roller and withm � 0:05:
The drawline length is greater than the previous simulations owing to an added wrap on the first roller.



contacts the heated third roller, then over the first 5 cm of
this roller the temperature ramps up to 513 K, thereafter
remaining at the roller temperature 513 K (see Fig. 7).
The remaining process conditions for the three simulations
are displayed in Table 2. Note that, aside from the tempera-
ture profiles, the processes of simulations 1 and 2 are iden-
tical.

In addition to the temperature profile, simulation 3 differs
from the other two in that there is a lower coefficient of
friction between the fiber and the rollers�m � 0:05 rather
than 0.2), and there are two and a quarter wraps on the first
roller rather than one and a quarter, necessitated by the low
friction coefficient. (If there were only one and a quarter
wrap in this simulation, the solution of Eq. (19) would
yield y1 � 233 cm; the negative value signifies that the
necessary draw surface is greater than what is available
with just one and a quarter wrap, so the fibers would slip
over the entire contact with the roller.)

In each simulation we compute the fiber speedv�s� and
tensionT�s� throughout the drawline as described in Section
4, and display these functions in the figure above the speci-
fied temperature profile. With the computed functionsT�s�
and v�s�; we employ Eq. (4) to deduce the frictional and
normal forces per lengthf and n from the rollers on the
fiber as functions of position; these we also display in the
figures. In these plots, the superimposed symbols “× ” label
the locations where the fibers attach to and depart from the
rollers (these locations are input to the model), and the
symbols “W” label where slip starts in feed draw and ceases
in take-up draw (these locations are deduced by the model).
The abrupt bends in the speed plot not at a× or W indicate
the transitions into and out of the draw plateau of the fiber.

Referring to Figs. 5–7, the top left plot displays the
computed fiber speedv as a function of arclengths, and
the top right plot displays the computed fiber tensionT�s�:

Below this pair in order are the computed normal force per
lengthn�s� from the roller on the fiber, computed frictional
force per lengthf �s� from the roller on the fiber, and speci-
fied temperature profileQ�s�: Proceeding from left to right
in each plot, the first× (and beginning of the plot) is the
point of attachmentx0 � 0 cm of the fiber to roller 1, the
second× is the point of departurex1 from roller 1, the third
× is the point of attachmentx2 to roller 2, the fourth× is the
point of departurex3 from roller 2, the fifth× is the point of
attachment to the third roller, and the sixth× (and termina-
tion of plot) is the point of detachment from the roller 3. The
firstW is the point of initiationy1 of feed slip on roller 1, the
secondW is the point of cessationy2 of take-up slip on roller
2, the thirdW is the point of initiationy3 of feed slip on roller
2, and the fourthW is the point of cessationy4 of take-up slip
on roller 3.

In the isothermal simulation (Fig. 5) we find that condi-
tions (25) are violated by the solutions of Eq. (24) for all
allowable speedsv2 andv4 of attachment with the take-up
rollers,rv1 # v2 , rv2 andrv2 # v4 , rv3: Hence for the
given fiber response function and process conditions draw
does not occur on either take-up roller, i.e. the model
demandsy2 � x2; y4 � x4: Also, since the fiber is isothermal
in both freespans�dQ=ds� 0� and there are no intervening
guides, Eq. (14) dictates that speed is constant in both free-
spans. Therefore, in the isothermal process of simulation 1,
of the six possible places of draw listed at the end of Section
2 and in Fig. 1, draw occurs only in the first and fourth, i.e.
on the two feed rollers. This is due to our specific process
conditions and filament constitutive response.

Referring to Fig. 5, the fiber attaches to roller 1 at the first
× �s� 0 cm� with tensionT0 � 4:00× 105 dyn and at the
surface speedrv1 � 396 cm s21

: The fibers proceed with-
out slip on roller 1 until the firstW at s� 67 cm; in this
67 cm of no slip the speed, tension, and normal force per
length are all constant, and the friction force per lengthf is
zero�dQ=ds� 0 impliesf � 0 in Eq. (28)). The draw zone
on roller 1 is the 33 cm from the firstW �y1 � 67 cm� to the
second× �x1 � 100 cm�; where the fibers depart the roller.
In this draw zone the fiber speed increases from the surface
speed 396 cm s21 of roller 1 to the surface speed 476 cm s21

of roller 2, and the tension increases from 4.00× 105 to
6.76× 105 dyn. Note from the presence of the kink ats�
99 cm in thev�s� plot that the fiber is drawn on the first feed
roller from its initial stiff response into its soft plateau. For
67, s, 99 cm the draw is in the stiff portion of the fila-
ment response, where a large increase in tension accompa-
nies a small increase in strain and hence speed. For
99, s, 100 cm the draw is in the soft portion of the fila-
ment response, where a small increase in tension accompa-
nies a large increase in strain and speed. In the draw zone the
frictional force on the fiber is increasing and in the direction
opposite to fiber motion.

The 50 cm between the second× �x1 � 100 cm� and
third × �x2 � 150 cm� is the first freespan. In this isother-
mal freespan without guides, speed and tension are constant.
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Table 2
Input for simulation 1 (isothermal draw), simulation 2 (draw with a heated
second freespan), and simulation 3 (draw with a heated third roller). The
posited temperature profiles are displayed in Figs. 5–7, respectively

Input Sim. 1 Sim. 2 Sim. 3

Reference temperature,Q0 (K) 298 298 298
Coefficient of friction,m 0.2 0.2 0.05
Linear density of fiber,r
(denier)

450 450 450

Length of freespan 1 (cm) 50 50 50
Length of freespan 2 (cm) 50 50 50
Roller radius,r (cm) 12.7 12.7 12.7
Number of wraps on roller 1 1.25 1.25 1.25
Number of wraps on roller 2 1 1 1
Number of wraps on roller 3 1 1 1
Roller 1 surface speed,rv1

(cm s21)
396 396 396

Roller 2 surface speed,rv2

(cm s21)
476 476 476

Roller 3 surface speedrv3

(cm s21)
740 740 740



Note that the secondW coincides with the third× , indi-
cating the aforementioned result that there is no take-up
draw on roller 2: the fiber attaches to roller 2 atx2 � y2 �
150 cm already at its surface speedrv2 � 476 cm s21

: The
fiber proceeds on roller 2 without slip until the thirdW,
where it begins to slip; this draw zone on roller 2 is the
14 cm from the thirdW at y3 � 216 cm to the fourth× at
x3 � 230 cm; where the fiber departs from roller 2 already
at the surface speed of roller 3. Note from the kink inv�s�
that the fiber has been drawn out of its soft plateau on the
second feed roller.

Between the fourth× and fifth × (atx4 � 280 cm) is the
second freespan, again isothermal with no guides and hence
without draw. The fourthW coincides with the fifth × ,
again indicating that there is no take-up draw in this isother-
mal process. The fiber proceeds without slip on its entire
path on roller 3.

Fig. 5 shows that at the locationy1 � 67 cm where slip
begins, there is a rapid buildup of normal and frictional
forces. As the tow stretches, the normal and the frictional
forces increase, until they vanish when the tow leaves the
roller. The tension in the tow increases uniformly down
the drawline. The fiber velocity increases slightly when
the extension of the fiber is within the initial stiffer region
of the constitutive relation. Ats� 99 cm; the fiber behavior
moves from the first stiff region to the compliant region, and
correspondingly the speed of the tow increases rapidly up to
the surface speed of roller 2. Between 100 and 216 cm the
tow moves through the freespan and the no-slip zone on
roller 2 with no changes in the tension and velocity. Aty3 �
216 cm; the tow starts slipping by moving faster than the
roller surface, the normal and the frictional forces build up,
and the tension increases monotonically. The velocity
increases rapidly when the fibers are still in the compliant
plateau, but when they enter the second stiffer region the
increase in velocity slows down. There are no changes in the
tension or velocity in the second freespan, as the process is
set up.

In Fig. 6 depicting simulation 2, again note the upward
ramp in the temperature profileQ�s� between the fourth×
and the fifth × , modeling the heated second freespan, and
the downward ramp inQ�s� for the first 5 cm after the fifth
× , modeling the cooling of the fibers upon contact with the
unheated roller 3. In this process there is draw inthreeof the
six possible zones, namely draw on the two feed rollers (as
in simulation 1) and also draw in the second freespan
because of the presence of the heater. There is no draw in
the other three possible zones: the model indicates there is
no draw on the two take-up rollers in the same manner as in
simulation 1; we find that conditions (25) are violated by
solutions of Eq. (24) for all allowable speedsv2 and v4.
There is no draw in the first freespan since it is isothermal
and without guides.

In Fig. 6 the behavior of the tow is identical to that of the
isothermal process of simulation 1 until the heated second
freespan. When the fibers experience higher temperature,

they behave in accordance with the corresponding constitu-
tive equations for that temperature, resulting in reduced
tension in the tow as the fibers become softer. Since the
fiber can stretch with lower tension in this region, the
speed of the fibers increases in this zone in order to match
the surface speed of the third roller. The tow enters the third
roller without slip, but the decreasing temperature of the
fiber induces an increased tension, accompanied by fric-
tional and normal forces, immediately after the tow attaches
to the roller.

In our third simulation (Fig. 7), the differences are a lower
friction coefficient, two and a quarter wraps on roller 1 (note
that the distance between the first× and the second× is
now 180 rather than 100 cm), no freespan heaters, and a
heated roller 3. For this process there is draw on both feed
rollers and no draw on the first (unheated) take-up roller and
unheated freespans. Owing to the presence of the heated
roller 3, however, there are for the first time in our simula-
tions steady solutions with take-up draw, in which the tow
attaches to roller 3 with speed less than the surface speed of
roller 3.

When we solve the second equation of Eq. (24), we find
solutions ofy4 satisfyingy4 $ x4 for all values ofv4 between
687.5 and 740 cm s21. Each of these values produces a
steady solutionv�s�; T�s�; f �s�; andn�s�: Those with 687:5 #
v4 , 740 cm s21 exhibit take-up on the heated roller; that
with v4 � 740 cm s21 has no take-up draw. As discussed
before, only the steady solution with the lowest energy
will be stable and hence persist in the real world. We find
that the solution with no take-up draw has the lowest value
of the energy functione defined in Eq. (33), and this is the
solution exhibited in Fig. 7.

We comment that the reason for the absence of take-up
draw on the heated roller 3 is fundamentally different from
the reason for no take-up draw on roller 2: on the unheated
roller 2 take-up draw is not possible, since the first part of
Eq. (24) has no solution satisfyingy2 . x2: On the heated
roller 3, take-up draw is possible but unstable.

From Fig. 7 we see that the effect of the heated roller is a
large decrease in fiber tension and a large frictional force
from the roller when the fiber temperature is increasing. We
also note that the lower friction coefficient has produced a
much larger draw zone on the first feed roller, and reduced
the magnitude of friction. The difference in behavior shown
between Figs. 6 and 7 is indicative of the differences in
response in filament yarn and staple tow draw processes.

6. Conclusions

A general method of characterizing fiber behavior in a
multi-stage draw process is described in this paper. The
efficacy of the model is demonstrated for three different
two-stage draw processes, with different drawing condi-
tions. The model is flexible to address any fibrous material,
as long as its piecewise linear elastic–plastic behavior is
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known for a range of temperature conditions. The analysis
we present allows one to compare the effectiveness of differ-
ent drawing conditions, enabling fiber manufacturers to
identify optimum processing conditions. The outcome of
this analysis is the velocity and tension at any point along
the length of the yarn, and the forces from the rollers on the
yarn, for specific drawing conditions. These predictions can
in turn serve as the input data for investigating micro-struc-
ture development in the fiber during drawing. As mentioned
earlier, the micro-structure developed in the fiber is respon-
sible for the fiber properties. As the velocity and tension
profile is altered, vastly different micro-structure in the
fiber could result. The next important step in the study is
to couple micro-structure development with the output of
this investigation.
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